A universal method for the study of CR1 retroposons in nonmodel bird genomes.

نویسندگان

  • Alexander Suh
  • Jan Ole Kriegs
  • Stephen Donnellan
  • Jürgen Brosius
  • Jürgen Schmitz
چکیده

Presence/absence patterns of retroposon insertions at orthologous genomic loci constitute straightforward markers for phylogenetic or population genetic studies. In birds, the convenient identification and utility of these markers has so far been mainly restricted to the lineages leading to model birds (i.e., chicken and zebra finch). We present an easy-to-use, rapid, and cost-effective method for the experimental isolation of chicken repeat 1 (CR1) insertions from virtually any bird genome and potentially nonavian genomes. The application of our method to the little grebe genome yielded insertions belonging to new CR1 subfamilies that are scattered all across the phylogenetic tree of avian CR1s. Furthermore, presence/absence analysis of these insertions provides the first retroposon evidence grouping flamingos + grebes as Mirandornithes and several markers for all subsequent branching events within grebes (Podicipediformes). Five markers appear to be species-specific insertions, including the hitherto first evidence in birds for biallelic CR1 insertions that could be useful in future population genetic studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Lineages of Ancient CR1 Retroposons Shaped the Early Genome Evolution of Amniotes

Chicken repeat 1 (CR1) retroposons are long interspersed elements (LINEs) that are ubiquitous within amniote genomes and constitute the most abundant family of transposed elements in birds, crocodilians, turtles, and snakes. They are also present in mammalian genomes, where they reside as numerous relics of ancient retroposition events. Yet, despite their relevance for understanding amniote gen...

متن کامل

Analysis of CR1 repeats in the zebra finch genome

Most bird species have smaller genomes and fewer repeats than mammals. Chicken Repeat 1 (CR1) repeat is one of the most abundant families of repeats, ranging from ~133,000 to ~187,000 copies accounting for ~50 to ~80% of the interspersed repeats in the zebra finch and chicken genomes, respectively. CR1 repeats are believed to have arisen from the retrotransposition of a small number of master e...

متن کامل

Determination of the entire sequence of turtle CR1: the first open reading frame of the turtle CR1 element encodes a protein with a novel zinc finger motif.

CR1 elements are a family of retroposons. They are classified as long interspersed elements (LINEs) or non-long-terminal-repeat (non-LTR) retrotransposons, and they have been found in the genomes of many vertebrates. However, they have been only partially characterized, and only a 2-kb region of the 3' end of chicken CR1 has been sequenced. In the present study, we determined the entire consens...

متن کامل

Determining the Position of Storks on the Phylogenetic Tree of Waterbirds by Retroposon Insertion Analysis

Despite many studies on avian phylogenetics in recent decades that used morphology, mitochondrial genomes, and/or nuclear genes, the phylogenetic positions of several birds (e.g., storks) remain unsettled. In addition to the aforementioned approaches, analysis of retroposon insertions, which are nearly homoplasy-free phylogenetic markers, has also been used in avian phylogenetics. However, the ...

متن کامل

Species Specific DNA Profiling Mycobacterial Genomes Using Polymerase Chain Reaction with Single Universal Primer (UP-PCR)

Three tuberculous, twenty-one non-tuberculous mycobacterial (NTM) reference strains and seventy two isolates classified by biochemical tests were shown to produce specific sets of DNA fragments in a polymerase chain reaction with single universal primer (UP-PCR). A rather wide limit of tolerance for variations in procedure of PCR mixture preparation and thermocycling parameters was found. There...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 29 10  شماره 

صفحات  -

تاریخ انتشار 2012